U Magazine
U Magazine
UCLA Health
 
David Geffen School of Medicine
 
The Cutting Edge

Turning Stem Cells into Cancer-Killing Warriors

RESEARCHERS FROM UCLA'S CANCER AND STEM-CELL CENTERS have demonstrated for the first time that blood stem cells can be engineered to create cancer-killing T-cells that seek out and attack a human melanoma. The researchers believe the approach could be useful in about 40 percent of Caucasians with this malignancy.

Done in mouse models, the study serves as the first proof-of-principle that blood stem cells, which make every type of cell found in the blood, can be genetically altered in a living organism to create an army of melanoma-fighting T-cells, says Jerome Zack, Ph.D., professor of medicine and microbiology, immunology and molecular genetics and a scientist with UCLA's Jonsson Comprehensive Cancer Center and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

"We knew from previous studies that we could generate engineered T-cells, but would they work to fight cancer in a relevant model of human disease, such as melanoma?" asks Dr. Zack. "We found with this study that they do work in a human model to fight cancer, and it's a pretty exciting finding."

The study appeared in the online edition of the journal Proceedings of the National Academy of Sciences.

Researchers used a T-cell receptor — cloned by other scientists from a cancer patient — that seeks out an antigen expressed by a certain type of melanoma. They then genetically engineered the human-blood stem cells by importing genes for the T-cell receptor into the stem-cell nucleus using a viral vehicle. The genes integrate with the cell DNA and are permanently incorporated into the blood stem cells, theoretically enabling them to produce melanoma-fighting cells indefinitely and when needed, says Dimitrios N. Vatakis, the study's first author and an assistant researcher in Dr. Zack's lab.

"The nice thing about this approach is a few engineered stem cells can turn into an army of T-cells that will respond to the presence of this melanoma antigen," Vatakis says. "These cells can exist in the periphery of the blood, and if they detect the melanoma antigen, they can replicate to fight the cancer."

In the study, the engineered blood stem cells were placed into human thymus tissue that had been implanted in the mice, allowing Dr. Zack and his team to study the human immune system reaction to melanoma in a living organism. Over about six weeks, the engineered blood stem cells developed into a large population of mature, melanoma-specific T-cells that were able to target the right cancer cells.

The mice were then implanted with two types of melanoma tumors, one that expressed the antigen complex that attracts the engineered T-cells and one that did not. The engineered cells specifically went after the antigen-expressing melanoma, leaving the control tumor alone, Dr. Zack says.

This approach to immune system engineering has intriguing implications, Dr. Zack says. T-cells can be engineered to fight disease, but their function is not long-lasting in most cases, and more engineered T-cells ultimately are needed to sustain a response. This new approach engineers the cells that give rise to the T-cells so that "fresh" cancer-killing cells could be generated when needed, perhaps protecting against cancer recurrence later.

 





Add a comment


Please note that we are unable to respond to medical questions. For information about health care, or if you need help in choosing a UCLA physician, please contact UCLA Physician Referral Service (PRS) at 1-800-UCLA-MD1 (1-800-825-2631) and ask to speak with a referral nurse. Thank you.